
SIMPLE-NN Documentation
Release 2.0.0

Kyuhyun Lee
Dongsun Yoo

Wonseok Jeong
Jisu Jung

Seungwu Hwang
Sangmin Oh and Seungwu Han

Oct 11, 2023

CONTENTS

1 Installation 3
1.1 Requirements . 3
1.2 Procedures . 3
1.3 Test your installation . 6

2 Inputs 7
2.1 input.yaml . 7
2.2 params_XX . 25
2.3 structure_list . 26
2.4 run.py . 26

3 Quick tutorial 27
3.1 Introduction . 27
3.2 Preprocess . 27
3.3 Training . 28
3.4 Evaluation . 29
3.5 Molecular dynamics . 30

4 Advanced features 31
4.1 Introduction . 31
4.2 GDF weighting . 31
4.3 Uncertainty estimation . 32

5 Release note 35
5.1 v2.1.0 (29 Sep 2022) . 35
5.2 v2.0.0 (3 Dec 2021) . 35
5.3 v1.1.1 (23 Sep 2021) . 35
5.4 v1.1.0 (13 Oct 2020) . 36
5.5 v1.0.0 (21 Feb 2020) . 36
5.6 v0.8.0 (6 Apr 2019) . 36
5.7 v0.6.0 (20 Nov 2018) . 36
5.8 v0.5.0 (11 Oct 2018) . 37
5.9 v0.4.6 (18 Sep 2018) . 37
5.10 v0.4.5 (4 Sep 2018) . 37
5.11 v0.4.3 (24 Aug 2018) . 37

6 FAQ 39

i

ii

SIMPLE-NN Documentation, Release 2.0.0

SIMPLE-NN (SNU Interatomic Machine-learning PotentiaL packagE – version Neural Network) SIMPLE-NN is a
code to construct the neural network interatomic potential (NNP) from ab initio results. SIMPLE-NN also provides an
interfacing module to LAMMPS for executing MD.

Note: Please be understood that we are currently rewriting the documentation for better readibility. We will finish it
as soon as possible.

CONTENTS 1

SIMPLE-NN Documentation, Release 2.0.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Requirements

• Python 3.6-3.9

• PyTorch 1.5.0-1.10.1 (package for machine learning)

• LAMMPS 23Jun2022 or newer (simulator for molecular dynamics)

Optional:

• mpi4py (library for parallel CPU computation in preprocessing)

1.2 Procedures

1.2.1 1. Pytorch

Install PyTorch: https://pytorch.org/get-started/locally

Choose the PyTorch of stable release for Python. If you have CUDA-capable system, please download PyTorch with
CUDA that makes training much faster.

To check if your GPU driver and CUDA are enabled by PyTorch, run the following commands in python to return
whether or not the CUDA driver is enabled:

import torch.cuda
torch.cuda.is_available()

1.2.2 2. SIMPLE-NN

2-1. Download via git clone

You can download a SIMPLE-NN source code through cloning from repository like this:

git clone https://github.com/MDIL-SNU/SIMPLE-NN_v2.git SIMPLE-NN

3

https://pytorch.org/get-started/locally

SIMPLE-NN Documentation, Release 2.0.0

2-2. Download as a zip file

Alternatively, you can download a current SIMPLE-NN source code as zip file from link below.

Download SIMPLE-NN: https://github.com/MDIL-SNU/SIMPLE-NN_v2

Note: We recommend using venv or conda for convenient module managenement.

After downloading the SIMPLE-NN, install SIMPLE-NN with following the command.

cd SIMPLE-NN
python setup.py install

If you run into permission issues, add a --user tag after the last command.

1.2.3 3. LAMMPS

Currently, we support the module for symmetry_function - Neural_network model.

Download LAMMPS: https://github.com/lammps/lammps

Only LAMMPS whose version is 23Jun2022 or newer is supported.

Copy the source code to LAMMPS src directory.

cp SIMPLE-NN_v2/simple-nn/features/symmetry_function/pair_nn* /path/to/lammps/src/
cp SIMPLE-NN_v2/simple-nn/features/symmetry_function/symmetry_function.h /path/to/lammps/
→˓src/

pair_nn* in the first command includes the pair_nn.cpp, pair_nn.h, pair_nn_replica.cpp, and
pair_nn_replica.h.

Compile LAMMPS code.

cd /path/to/lammps/src/
make mpi

After this step, you can test your installation.

1.2.4 4. mpi4py (optional)

SIMPLE-NN supports the parallel CPU computation in dataset generation and preprocessing for an additional speed
gain.

Install mpi4py:

pip install mpi4py

4 Chapter 1. Installation

https://github.com/MDIL-SNU/SIMPLE-NN_v2
https://github.com/lammps/lammps

SIMPLE-NN Documentation, Release 2.0.0

1.2.5 5. Intel SIMD acceleration (optional)

The filename extension simd refers to Intel-accelerated version of simulating molecular dynamics in SIMPLE-NN. By
utilizing vector-matrix multiplication routines in Intel MKL and vectorizing descriptor computation by SIMD, overall
speed up would be x3 to x3.5 faster than the regular version.

5.1 Requirements

• Intel CPU supporting AVX

• Compiler supporting AVX instruction set

• IntelMKL 2018.5.274 and 2022.1.0 tested

• Lammps 23Jun2022-Update1(stable) tested

In our experience, the best performance is achieved when source compiled with intel compiler(icpc) and intel mpi
(mpiicpc). LAMMPS provides default makefile for intel compiler, intel mpi and mkl library path setting. Therefore,
we recommend to compile lammps source with intel compiler.

The code uses AVX-related functions from intel intrinsic, BLAS routines of MKL, and vector math. So if older versions
of MKL and intel compilers support these features, there is no problem for compiling.

5.2 Installation

cp {simple_nn_path}/simple_nn/features/symmetry_function/SIMD/{pair_nn_simd.cpp, pair_nn_
→˓simd.h, pair_nn_simd_function.h} {lammps_source}/src/
cd {lammps_source}/src
make intel_cpu_intelmpi

Note: ‘make intel_cpu_intelmpi’ is an example of using the intel compiler for lammps. Before using a makefile, you
may need to explicitly set some library path and optimization flags (such as -xAVX) in the makefile if necessary.

5.3 Requirements for potential file

• Symmetry function group refers to a group of vector components which have the same target atom specie(s).

• Vector components of the same symmetry function group must have the same cutoff radius.

• Vector components of the same symmetry function group must be contiguous in potential file.

• The zeta value must be an integer in the angular symmetry functions.

Since some assumptions have been made about the potential files for acceleration, the potential file must follow the
rules above.

1.2. Procedures 5

SIMPLE-NN Documentation, Release 2.0.0

5.4 Usage

In youer LAMMPS script file, regular version uses pair_style nn. For the accelerated version, pair_style nn/
intel should be invoked.

5.5 Further Acceleration

Two additional accelerations are possible if the AVX2 or AVX512 instruction set is available. To enable these features,
add “-xCORE-AVX2” or “-xCORE-AVX512” compile flag to your makefile, depending on your CPU. Since AVX512
is released after AVX2, turning on AVX512 automatically turns on AVX2 as well.

Further acceleration by AVX2 is possible by computing unique values of symmetry function parameters to reduce
computation. So it puts some requirements on potential file. - The potential file must contain at least one G4 or G5
angular symmetry function. - The number of unique ‘eta’ value in same angular symmetry function group must be less
than 4(AVX2) or 8(AVX512). - The zeta value must be less than 8. This acceleration is about 25~35% faster than the
primitive AVX version.

In addition, AVX512 doubles the maximum size of simd calculation, whose speed up is around 10%.

You can check the log file of LAMMPS to see if the installation was successful and if the potential file conditions were
met. After LAMMPS reads the potential file, you can see somthing like this :

AVX2 for angular descriptor G4 calc : on/off
AVX2 for angular descriptor G5 calc : on/off
AVX512 for descriptor calc : on/off

1.3 Test your installation

To check whether SIMPLE-NN and LAMMPS are ready to run or not, we provide the shell script in
test_installation directory.

Note: If you use the venv or conda for SIMPLE-NN, activate the virtual environment before check.

Run run.sh with the path of lammps binary.

./run.sh /path/to/lammps/src/lmp_mpi

While run.sh tests SIMPLE-NN, LAMMPS with neural network potential, and LAMMPS with replica ensemble,
pass or fail messages will be printed like:

Test is going on...
SIMPLE-NN test is passed (or failed).
LAMMPS with neural network test is passed (or failed).
LAMMPS with replica ensemble test is passed (or failed).

If you have a problem in installation, post a issues in here.

6 Chapter 1. Installation

https://github.com/MDIL-SNU/SIMPLE-NN_v2/issues

CHAPTER

TWO

INPUTS

In this section, you can find the information of input files that are used in SIMPLE-NN.

2.1 input.yaml

In this section, you can find the features in input.yaml that are used in SIMPLE-NN.

2.1.1 Generate_features

• True (default) / False

generate_features determines whether SIMPLE-NN converts the ab initio calculation result into .pt format used as
input dataset or not. Detailed setting for generate_features can be found in Data

2.1.2 Preprocess

• True (default) / False

preprocess determines whether SIMPLE-NN splits the whole dataset into train/validation dataset and calculates the
scaling, PCA matrix, and atomic weights for input features or not. Detailed setting for preprocess can be found in
Preprocessing.

2.1.3 Train_model

• True (default) / False

train_model determines whether SIMPLE-NN optimizes(or evaluate) the neural network based on the train_list
and valid_list. Detailed setting for train_model can be found in Neural network.

7

SIMPLE-NN Documentation, Release 2.0.0

2.1.4 Random_seed

• null (default) / non-negative integer

random_seed is used to set the seed of random number generator in SIMPLE-NN. SIMPLE-NN has randomness
in train/valid separation, data loading, and weight initialization. When random_seed is set to null, SIMPLE-NN
generates the random number based on your system time. Users can reproduce the same training result with the random
seed value written at the top of the LOG file.

2.1.5 Params

• Type: dict

params contains the path of parameter files for each atom. For example, when the system consists of Si and O atoms,
params should be written down like this:

params:
Si: params_Si
O: params_O

The detailed description of params_XX can be found in params_XX. The order of species determines the index in
params_XX.

2.1.6 Data

In this section, you can find the parameters related to reference data that are used in SIMPLE-NN.

Path and format

type

• symmetry_function (default)

type chooses the kind of input feature descriptor. Currently, SIMPLE-NN supports only the Belher-Parrinello-type
atom-centered symmetry function.1 Parameters for generating symmetry functions are provided in params_XX.

struct_list

• structure_list (default)

struct_list stands for the path of the file that contains the reference dataset. Detailed format of structure_list is
found in structure_list.

1 J. Behler, J. Chem. Phys. 134 (2011) 074106

8 Chapter 2. Inputs

https://aip.scitation.org/doi/10.1063/1.3553717

SIMPLE-NN Documentation, Release 2.0.0

refdata_format

• vasp-out (default) / espresso-out / etc. . .

refdata_format describes the file format of reference dataset. As SIMPLE-NN reads the reference dataset via Atomic
Simulation Environment (ASE) module, only data format listed in here can be used as dataset.

compress_outcar

• True (default) / False

compress_outcar decides whether to compress OUTCAR or not before reading by Atomic Simulation Environment
(ASE) module. Compressing OUTCAR enhances the reading speed.

Note: compress_outcar only works to output of VASP called as OUTCAR

save_directory

• data (default)

save_directory defines the path, where data*.pt files are located.

save_list

• total_list (default)

save_list contains the whole data*.pt generated. It will be splited into train/validation set.

absolute_path

• True (default) / False

absolute_path determines whether all data paths are written as an absolute or relative path. Users can choose a useful
format.

2.1. input.yaml 9

https://wiki.fysik.dtu.dk/ase/ase/io/io.html

SIMPLE-NN Documentation, Release 2.0.0

Data extraction

read_force

• True (default) / False

read_force should be True if you want to extract force information from ab initio calculation result.

read_stress

• True (default) / False

read_stress should be True if you want to extract stress information from ab initio calculation result.

dx_save_sparse

• True (default) / False

dx_save_sparse determines whether the derivative of input feature matrix, which is used to calculate force from atomic
energy in training process, is saved as sparse or dense tensor. Generally, sparse tensor has smaller capacity but provides
slower training speed. We recommend testing on your system before setting. It only works when read_force is True.

2.1.7 Preprocessing

In this section, you can find the information of preprocessing in SIMPLE-NN.

Train/validation

data_list

• total_list (default)

data_list contains all the paths of reference data. Users can change the name of total_list as their favor.

train_list

• train_list (default)

train_list contains all the paths of training data which is separated as the rate of valid_rate.

10 Chapter 2. Inputs

SIMPLE-NN Documentation, Release 2.0.0

valid_list

• valid_list (default)

valid_list contains all the paths of validation data which is separated as the rate of valid_rate.

valid_rate

• 0.1 (default) / 0.0 ~ 1.0

valid_rate separates the rate of validation data and training data as a specified value(0.1). For example, if the
valid_rate is set as 0.1 10 % of total data are classified as validation data, and the remaining 90 % data are clas-
sified as training data.

shuffle

• True (default) / False

shuffle determines whether training data and validation data are randomly shuffled(True) or in order(False) based
on the valid_rate.

Scaling parameters

calc_scale

• True (default) / False

calc_scale determines whether SIMPLE-NN calculates scaling parameters(True) or not(False). Feature scaling is a
method used to normalize the range of independent variables or features of data. It is required because as the range of
raw data varies widely, the range of all features should be normalized in order to match the contribution of each feature
proportionately to the final width. SIMPLE-NN supports several scaling method as described in scale_type.

scale_type

• minmax (default) / meanstd, uniform gas

SIMPLE-NN supports minmax, meanstd, uniform gas for scaling calculation. The usage of scal_type is as below.

input.yaml
preprocessing:

scale_type: minmax

Note: If the scale_type tag is set as uniform gas, there is an additional tag named scale_rho.

2.1. input.yaml 11

SIMPLE-NN Documentation, Release 2.0.0

scale_rho

• atom_type: atomic density

The usage of scale_rho is as below. Users can give scale_rho value as atomic density(# of atoms / volume) for each
atom. The unit of scale_rho is −3

#input.yaml
preprocessing:

scale_type: uniform gas
scale_rho:

Si: 0.01
O : 0.02

scale_width

• 1.0 (default)

scale_width determines the width of the distribution of scaled data.

PCA parameters

calc_pca

• True (default) / False

The principal component analysis(PCA) is the process of computing the principal components and using them to modify
the basis of data. It is useful to reduce the number of dimensions in the vectors in a dataset. calc_pca determines
whether SIMPLE-NN calculates pca(True) or not(False).

pca_whiten

• True (default) / False

pca_whiten determines whether SIMPLE-NN performs pca whitening(True) or not(False). The effect of pca whiten-
ing is shown as below.1

1 CS231n-Stanford

12 Chapter 2. Inputs

https://cs231n.github.io/neural-networks-2/

SIMPLE-NN Documentation, Release 2.0.0

min_whiten_level

• 1.0e-8 (default)

When pca_whiten is set as True, the min_whiten_level is activated. The minimum width of the distributed data after
the PCA process must be bigger than min_whiten_level to apply the PCA whitening.

Atomic weights

calc_atomic_weights

• False (default) / gdf

As mentioned in Advanced features section, tuning the weight of atomic force in loss function can be used to reduce
the force errors of sparsely sampled atoms. In order to activate atomic weights, the usage of calc_atomic_weights is
shown as below. SIMPLE-NN supports automatic parameter generation scheme for 𝜎 and 𝑐. Use the setting params:
Auto to get a robust 𝜎 and 𝑐.

input.yaml
preprocessing:

calc_atomic_weights:
type: gdf
params: Auto

2.1.8 Neural network

In this section, you can find the information of neural network in SIMPLE-NN.

2.1. input.yaml 13

SIMPLE-NN Documentation, Release 2.0.0

Running mode

train

• True (default) / False

train determines whether SIMPLE-NN conducts training(True) or not(False). For the test process and drawing
correlation graph, train tag must be set as False.

train_list

• train_list (default)

train_list reads the list of training data that is produced from Preprocessing step.

valid_list

• valid_list (default)

valid_list reads the list of validation data that is produced from Preprocessing step.

test

• False (default) / True

If the test tag is set as True, the predicted energy and forces for the test set are calculated.

test_list

• test_list (default)

If the test tag is set as True, SIMPLENN reads the test_list to perform the test step.

add_NNP_ref

• False (default) / True

In order to apply replica ensemble to Neural Network Potentials, add_NNP_ref must be set as True. Then SIMPLE-
NN reads ref_list, producing atomic energies into the data.pt file. The continue tag must be set as shown below.

14 Chapter 2. Inputs

SIMPLE-NN Documentation, Release 2.0.0

#input.yaml
neural_network:

continue: weights

ref_list

• ref_list (default)

ref_list is required when add_NNP_ref is activated. As shown below, users must make ref_list with preprocessed
training data and validation data.

cat train_list valid_list > ref_list

train_atomic_E

• False (default) / True

If the train_atomic_E tag is set as True, based on the train_list and valid_list which were produced from add_NNP_ref
step, SIMPLE-NN trains one set of replica ensemble. By varying weight parameters and network size, users can apply
replica ensemble to Neural Network Potentials. The continue tag must be set as shown below.

#input.yaml
neural_network:

continue: null

test_atomic_E

• False (default) / True

If the test_atomic_E tag is set as True, the predicted total and atomic energies for the test set are calculated.

use_force

• True (default) / False

If the use_force tag is set as True, force is used for training. From our experience, we recommend training with
both energy and forces for robust Neural Network Potential, since training with only energy induces overfitting, while
training with forces only gives large errors in total energy.

2.1. input.yaml 15

SIMPLE-NN Documentation, Release 2.0.0

use_stress

• True (default) / False

If the use_stress tag is set as True, stress is used for training.

shuffle_dataloader

• True (default) / False

When SIMPLE-NN divides training data based on the batch size, shuffle_dataloader determines whether to select
data randomly(True) or in order(False).

Network

nodes

• 30-30 (default)

nodes indicate the network architecture. 30-30means 2 hidden layers with 30 hidden nodes. As shown below, increas-
ing the number of nodes guarantees low energy RMSE but slow computation, while decreasing the number of nodes
is fast but gives high energy RMSE value.

Note: Note that this figure is the result of Si MD, which is too simple to show the effect of nodes.

16 Chapter 2. Inputs

SIMPLE-NN Documentation, Release 2.0.0

acti_func

• sigmoid (default) / tanh, relu, selu, swish

SIMPLE-NN supports several activation functions, such as sigmoid function which is the default setting, hyperbolic
tangent(tanh) function, rectified linear unit(relu) function, scaled exponential linear unit(selu) function and swish
function. The usage of acti_func is shown as below.

input.yaml
neural_network:
acti_func: sigmoid

double_precision

• True (default) / False

double_precision determines whether the double-precision(True) or single-precision(False) is used.

weight_initializer

• type: xavier normal (default) / xavier uniform, normal, constant, kaiming normal, kaiming
uniform, he normal, he uniform, orthogonal, sparse

Weight initialization is used to define the initial values for the parameters in Neural Network models prior to training the
models on dataset. SIMPLE-NN supports several weight_initializer and the usage of weight_initializer is as below.

input.yaml
neural_network:

weight_initializer:
type: xavier normal
params:

dropout

• 0 (default) / 0 ~ 1

The main idea of dropout is to randomly drop units from the neural network during training, resulting in a significant
reduction of overfitting. Users must type a value between 0 and 1 to enable dropout. For example, if users type 0.25,
25 % of nodes in neural network hidden layers are dropped.

2.1. input.yaml 17

SIMPLE-NN Documentation, Release 2.0.0

use_scale

• True (default) / False

use_scale determines whether SIMPLE-NN uses scaling parameters(True) that is calculated from calc_scale step or
not(False).

use_pca

• True (default) / False

use_pca determines whether SIMPLE-NN uses pca(True) that is calculated from calc_pca step or not(False).

use_atomic_weights

• False (default) / True

If use_atomic_weights tag is set as True, SIMPLE-NN uses the atomic weights that are produced from
calc_atomic_weights step.

weight_modifier

• type: null (default) / modified sigmoid

Dictionary for weight modifier. The usage of weight_modifier is as below.

input.yaml
neural_network:

weight_modifier:
type: modified sigmoid
params:

Optimization

optimizer

• method: Adam (default) / Adadelta, Adagrad, AdamW, Adamax, ASGD, SGD, RMSprop, Rprop

optimizer determines the optimization method. The usage of optimizer is as below. SIMPLE-NN supports Adam,
Adadelta, Adagrad, AdamW, Adamax, ASGD, SGD, RMSprop and Rprop.

18 Chapter 2. Inputs

SIMPLE-NN Documentation, Release 2.0.0

input.yaml
neural_network:

optimizer:
method: Adam
params:

As shown below, in general, Adam type optimizer shows the best convergence.

batch_size

• 8 (default)

batch_size determines the number of samples in the batch training set. As shown below, increasing batch size shows a
slow drop of energy RMSE and gives small fluctuations while decreasing batch size shows a fast drop of energy RMSE
and gives large fluctuations.

2.1. input.yaml 19

SIMPLE-NN Documentation, Release 2.0.0

full_batch

• False (default) / True

If the full_batch tag is set as True, full batch mode is enabled.

total_epoch

• 1000 (default)

total_epoch indicates the number of total training epoch.

learning_rate

• 0.0001 (default)

learning_rate indicates the learning rate for the gradient descendent-based optimization algorithm. As shown below,
increasing learning rate gives a fast energy RMSE drop but large fluctuations, while decreasing learning rate gives
small fluctuations but slow energy RMSE drop.

decay_rate

• null (default)

The learning_rate is a parameter that determines how much the update step affects the current value of the weights
while the decay_rate is an additional term in a weight update rule that exponentially reduces a weight to zero.

20 Chapter 2. Inputs

SIMPLE-NN Documentation, Release 2.0.0

l2_regularization

• 1.0e-6 (default)

l2_regularization indicates the value of weight decay. Weight decay is a regularization technique by adding a small
penalty to the loss function, which can prevent overfitting. SIMPLE-NN supports L2 regularization.

Loss function

loss_scale

• 1. (default)

loss_scale indicates the scaling coefficient for the entire loss function.

E_loss_type

• 1 (default)

E_loss_type determines whether SIMPLE-NN uses normalized(divided by # of atoms) energy loss function(1) or
not(2).

F_loss_type

• 1 (default)

F_loss_type determines whether SIMPLE-NN uses normalized(divided by # of atoms) force loss function(1) or not(2).

energy_coeff

• 1. (default)

energy_coff indicates the scaling coefficient for energy loss.

force_coeff

• 0.1 (default)

force_coff indicates the scaling coefficient for force loss.

2.1. input.yaml 21

SIMPLE-NN Documentation, Release 2.0.0

stress_coeff

• 1.0e-06 (default)

stress_coff indicates the scaling coefficient for stress loss.

Logging & saving

show_interval

• 10 (default)

show_interval indicates the interval for printing RMSE in the LOG file.

save_interval

• 0 (default)

save_interval indicates the interval for saving the neural network potential file.

energy_criteria

• null (default)

energy_criteria (eV/atom) determines the stopping criteria for energy RMSE. In our experience, less than 10
meV/atom gives a reasonable result.

force_criteria

• null (default)

force_criteria determines the stopping criteria for force RMSE. In our experience, less than 0.3 eV/ gives reasonable
result.

stress_criteria

• null (default)

stress_criteria (kB) determines the stopping criteria for stress RMSE. In our experience, less than 10 kB gives rea-
sonable result.

22 Chapter 2. Inputs

SIMPLE-NN Documentation, Release 2.0.0

print_structure_rmse

• False (default) / True

If the print_structure_rmse tag is set as True, RMSE’s for each structure type is also printed in the LOG file.

Continue

continue

• null (default) / weights, checkpoint_bestmodel.pth.tar

If the continue tag is set to weights, the training process restarts from the LAMMPS potential
file(potential_saved). If the tag is set to checkpoint_bestmodel.pth.tar, the training process restarts
from the checkpoint file. The usage of continue is as below.

#input.yaml
neural_network:

continue: weights / checkpoint_bestmodel.pth.tar

Note: Users need to copy pca and scale_factor and potential files if you use LAMMPS potential(change the name
of potential file into potential_saved).

Users need to copy checkpoint_bestmodel.pth.tar into your running directory if you use checkpoint file.

clear_prev_status

• False (default) / True

clear_prev_status determines whether SIMPLE-NN continues from the :doc://inputs.input.yaml/neural_network/start_epoch
with the corresponding network inside the checkpoint_bestmodel.pth.tar file(False)or not. The usage of
clear_prev_status is shown as below.

#input.yaml
neural_network:

continue: checkpoint_bestmodel.pth.tar
clear_prev_status: True
start_epoch: 5

Note: More details of clear_prev_optimizer is under construction.

2.1. input.yaml 23

SIMPLE-NN Documentation, Release 2.0.0

clear_prev_optimizer

• False (default) / True

clear_prev_optimizer determines whether SIMPLE-NN continues with the optimizer inside the
checkpoint_bestmodel.pth.tar file(False)or not.

#input.yaml
neural_network:

continue: checkpoint_bestmodel.pth.tar
clear_prev_optimizer: False

Note: More details of clear_prev_optimizer is under construction.

start_epoch

• 1 (default) / Non-negative integer

start_epoch determines at which epoch SIMPLE-NN will start.

Parallelism

use_gpu

• True (default) / False

use_gpu indicates whether SIMPLE-NN operates with GPU (True) or CPU (False).

GPU_number

• null (default) / Non-negative integer

GPU_number determines which GPU SIMPLE-NN will use.

inter_op_threads

• 0 (default)

inter_op_threads indicates the number of threads for CPU.

24 Chapter 2. Inputs

SIMPLE-NN Documentation, Release 2.0.0

intra_op_threads

• 0 (default)

Under construction

subprocesses

• 0 (default)

subprocesses indicates how many subprocesses to use for data loading. 0 means that the data will be loaded in the
main process.

Note: More details are explained at PyTorch website.1

2.2 params_XX

params_XX contains the coefficients for symmetry functions (SFs). XX is the element name in the target system.
‘param_XX’ is written in the following style:

2 1 0 6.0 0.003214 0.0 0.0
2 1 0 6.0 0.035711 0.0 0.0
4 1 1 6.0 0.000357 1.0 -1.0
4 1 1 6.0 0.028569 1.0 -1.0
4 1 1 6.0 0.089277 1.0 -1.0

Each line means:

[Type of SF (1)] [Atom-type index (2)] [Cutoff radius (1)] [Coefficients for SF (3)]

The number inside (·) is the dimension of parameters.

[Type of SF] Currently, G2, G4, and G5 are supported, selected by 2, 4, and 5, respectively.

[Atom-type index] Type indices of neighbor atoms which starts from 1. The order of type index follows that of the
params tag written in input.yaml) The radial part (G2) requires only one neighbor type so the second parameter is
neglected. For the angular parts (G4 and G5), two neighboring types are needed. The order of the two parameters does
not matter.

[Cutoff radius] The cutoff radius for cutoff functions in the given SF.

[Coefficients for SF] The parameters defining each symmetry function. For G2, the first two values indicate 𝜂 and Rs

and the third one is neglected. For G4 and G5, 𝜂, 𝜁, and 𝜆 are listed in this order.
1 TORCH.UTILS.DATA

2.2. params_XX 25

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

SIMPLE-NN Documentation, Release 2.0.0

2.3 structure_list

str_list contains the location of reference calculation data. The format is described below:

[structure_type_1]
/location/of/calculation/data/oneshot_output_file :
/location/of/calculation/data/MDtrajectory_output_file 100:2000:20

[structure_type_2 : 3.0]
/location/of/calculation/data/same_folder_format{1..10}/oneshot_output_file :

You can use the format of braceexpand to set a path to reference file (like last line). The part which is written after the
path indicates the index of snapshots. (format is ‘start:end:interval’. ‘:’ means all snapshots.) You can group structures
like above for convenience ([structure_group_name] above the pathes of reference file). If print_structure_rmse
is true, RMSEs for each structure type are also prited in LOG file. In addition, you can set the weights for each structure
type ([structure_group_name : weights], default: 1.0).

2.4 run.py

run.py is the simple script for running SIMPLE-NN, passing the input.yaml.

from simple-nn import run

run('input.yaml')

26 Chapter 2. Inputs

https://pypi.org/project/braceexpand/

CHAPTER

THREE

QUICK TUTORIAL

3.1 Introduction

This section demonstrate SIMPLE-NN with tutorials. Example files are in SIMPLE-NN/tutorials/. In this example,
snapshots from 500K MD trajectory of amorphous SiO2 (72 atoms) are used as training set.

To run SIMPLE-NN, type the following command:

python run.py

If you have installed mpi4py, MPI parallelization provides an additional speed gain in preprocess
(generate_features and preprocess in input.yaml).

mpirun -np $numproc python run.py

where numproc stands for the number of CPU processors.

Note: In this example, all paths in *_list such as train_list and valid_list are written as relative path. There-
fore, you should copy data directory to each example or change the paths properly after the first example Preprocess.

3.2 Preprocess

To preprocess the ab initio calculation result for training dataset of NNP, you need three types of input file (input.
yaml, structure_list, and params_XX). The example files except params_Si and params_O are introduced below.
Detail of params_Si and params_O can be found in params_XX section. In this example, 70 symmetry functions consist
of 8 radial symmetry functions per 2-body combination and 18 angular symmetry functions per 3-body combination.
Input files introduced in this section can be found in SIMPLE-NN/tutorials/Preprocess.

input.yaml
generate_features: True
preprocess: True
train_model: False

params:
Si: params_Si
O: params_O

preprocessing:
(continues on next page)

27

SIMPLE-NN Documentation, Release 2.0.0

(continued from previous page)

valid_rate: 0.1
calc_scale: True
calc_pca: True

str_list
../ab_initio_output/OUTCAR_comp ::10

With this input file, SIMPLE-NN calculates feature vectors and its derivatives (generate_features) and generates
training/validation dataset (preprocess). Sample VASP OUTCAR file (the file is compressed to reduce the file size)
is in SIMPLE-NN/tutorials/ab_initio_output.

In MD trajectory, snapshots are sampled only in the interval of 10 MD steps (20 fs).

Output files are provided in SIMPLE-NN/tutorials/Preprocess_answer except for data directory due to the large
capacity. data directory contains the preprocessed ab initio calculation results as binary format named data1.pt,
data2.pt, and so on.

If you want to see which data are saved in .pt file, use the following command.

import torch
result = torch.load('data1.pt')

result provides the information of input features as dictionary format.

Warning: We strongly recommend turning on the calc_pca and calc_scale options in the preprocess. They
significantly reduce the root-mean-square-error (RMSE) in the training.

3.3 Training

To train the NNP with the preprocessed dataset, you need to prepare the input.yaml, train_list, valid_list,
scale_factor, and pca. The last two files highly improves the loss convergence and training quality.

input.yaml
generate_features: False
preprocess: False
train_model: True

params:
Si: params_Si
O: params_O

neural_network:
nodes: 30-30
batch_size: 8
optimizer:

method: Adam
total_epoch: 100
learning_rate: 0.001
use_scale: True
use_pca: True

28 Chapter 3. Quick tutorial

SIMPLE-NN Documentation, Release 2.0.0

With this input file, SIMPLE-NN optimizes the neural network (train_model). The paths of training/validation
dataset should be written in train_list and valid_list, respectively. The 70-30-30-1 network is optimized by
Adam optimizer with the 0.001 of learning rate and batch size of 8 during 1000 epochs. The input feature vectors
whose size is 70 are converted by scale_factor, following PCA matrix transformation by pca The execution log and
energy, force, and stress root-mean-squared-error (RMSE) are stored in LOG. Input files introduced in this section can
be found in SIMPLE-NN/tutorials/Training.

3.4 Evaluation

To evaluate the training quality of neural network, test_list and result of training (checkpoint.pth.tar or
potential_saved) should be prepared. test_list contains the path of testset preprocessed as .pt format. .pt
format data can be generated as described in preprocess. Note that you should set train_list to test_list with
valid_rate of 0.0. Then, SIMPLE-NN will write all paths of preprocessed data in test_list.

input.yaml
generate_features: True
preprocess: True
train_model: False

params:
Si: params_Si
O: params_O

preprocessing:
train_list: 'test_list'
valid_rate: 0.0
calc_scale: False
calc_pca: False
calc_atomic_weights: False

In this example, test_list is made by concatenating train_list and valid_list in training for simplicity. Put the
name of result of training such as checkpoint_*.tar for PyTorch checkpoint file or weights for LAMMPS potential
in continue in input.yaml.

input.yaml
generate_features: False
preprocess: False
train_model: True

params:
Si: params_Si
O: params_O

neural_network:
train: False
test: True
continue: checkpoint_bestmodel.pth.tar

Input files introduced in this section can be found in SIMPLE-NN/tutorials/Evaluation.

Note: If you use LAMMPS potential (potential_saved), you need to copy pca and scale_factor file and change

3.4. Evaluation 29

SIMPLE-NN Documentation, Release 2.0.0

the name of potential as potential_saved.

After running SIMPLE-NN with the setting above, output file named test_result is generated. The file is pickle
format and you can open this file with python code of below

import torch
result = torch.load('test_result')

In the file, DFT energies/forces, NNP energies/forces are included. We also provide the python code (correlation.
py) that makes parity plots from test_result.

3.5 Molecular dynamics

Note: You have to compile your LAMMPS with pair_nn.cpp, pair_nn.h, and symmetry_function.h to run
molecular dynamics simulation.

To run MD simulation with LAMMPS, add the lines into the LAMMPS script file.

lammps.in

units metal

pair_style nn
pair_coeff * * /path/to/potential_saved_bestmodel Si O

Warning: This pair_style requires the newton setting to be on(default) for pair interactions.

Input script for example of NVT MD simulation at 300 K are provided in SIMPLE-NN/tutorials/Molecular
dynamics. Run LAMMPS via the following command.

/path/to/lammps/src/lmp_mpi < lammps.in

You also can run LAMMPS with mpirun command if multi-core CPU is supported.

mpirun -np $numproc /path/to/lammps/src/lmp_mpi < lammps.in

Output files can be found in SIMPLE-NN/tutorials/Molecular_dynamics_answer.

30 Chapter 3. Quick tutorial

CHAPTER

FOUR

ADVANCED FEATURES

4.1 Introduction

This section demonstrate SIMPLE-NN with tutorials. Example files are in SIMPLE-NN/tutorials/. In this example,
snapshots from 500K MD trajectory of amorphous SiO2 (72 atoms) are used as training set.

4.2 GDF weighting

Tuning the weight of atomic force in loss function can be used to reduce the force errors of the sprasely sampled atoms.
Gaussian densigy function (GDF) weighting1 is one of the methods, which suggests the gaussian type of weighting
scheme. To use GDF, you need to calculate the 𝜌(G) by adding the following lines to the symmetry_function
section in input.yaml. SIMPLE-NN supports automatic parameter generation scheme for 𝜎 and 𝑐. Use the setting
sigma: Auto to get a robust 𝜎 and 𝑐 (values are stored in LOG file). Input files introduced in this section can be
found in SIMPLE-NN/tutorials/GDF_weighting.

input.yaml:

preprocessing:
valid_rate: 0.1
calc_scale: True
calc_pca: True
calc_atomic_weights:

type: gdf
params: Auto

𝜌(G) indicates the density of each training point. After calculating 𝜌(G), histograms of 𝜌(G)−1 are also saved as in
the file of GDFinv_hist_XX.pdf.

Note: If there is a peak in high 𝜌(G)−1 region in the histogram, increasing the Gaussian weight(𝜎) is recommended
until the peak is removed. On the contrary, if multiple peaks are shown in low 𝜌(G)−1 region in the histogram, reduce
𝜎 is recommended until the peaks are combined.

In the default setting, the group of 𝜌(G)−1 is scaled to have average value of 1. The interval-averaged force error with
respect to the 𝜌(G)−1 can be visualized with the following script.

from simple_nn.utils import graph as grp
grp.plot_error_vs_gdfinv(['Si','O'], 'test_result')

1 W. Jeong, K. Lee, D. Yoo, D. Lee and S. Han, J. Phys. Chem. C 122 (2018) 22790

31

https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b08063

SIMPLE-NN Documentation, Release 2.0.0

The graph of interval-averaged force errors with respect to the 𝜌(G)−1 is generated as ferror_vs_GDFinv_XX.pdf

If default GDF is not sufficient to reduce the force error of sparsely sampled training points, One can use scale function
to increase the effect of GDF. In scale function, 𝑏 controls the decaying rate for low 𝜌(G)−1 and 𝑐 separates highly con-
centrated and sparsely sampled training points. To use the scale function, add following lines to the neural_network
section in input.yaml.

input.yaml:

neural_network:
weight_modifier:

type: modified sigmoid
params:

Si:
b: 1
c: 35.

O:
b: 1
c: 74.

For our experience, 𝑏 = 1.0 and automatically selected 𝑐 shows reasonable results. To check the effect of scale function,
use the following script for visualizing the force error distribution according to 𝜌(G)−1.

In the script below, test_result_woscale is the test result file from the training without scale function and
test_result_wscale is the test result file from the training with scale function. These test_result are made
as described in evaluation. We do not provide test_result_wscale.

from simple_nn.utils import graph as grp
grp.plot_error_vs_gdfinv(['Si','O'], 'test_result_woscale', 'test_result_wscale')

4.3 Uncertainty estimation

The local configuration shown in the simulation driven by NNP should be included the training set because NNP only
guarantees the reliability within the trained domain. Therefore, we suggest to check whether the local environment is
trained or not through the standard deviation of atomic energies from replica ensemble2. To estimate the uncertainty
of atomic configuration, following three steps are needed.

4.3.1 1. Atomic energy extraction

To estimatet the uncertainty of atomic configuration, the atomic energies extracted from reference NNP should be added
into reference dataset (.pt).

input.yaml

generate_features: False
preprocess: False
train_model: True

params:
Si: params_Si

(continues on next page)

2 W. Jeong, D. Yoo, K. Lee, J. Jung and S. Han, J. Phys. Chem. Lett. 2020, 11, 6090-6096

32 Chapter 4. Advanced features

https://pubs.acs.org/doi/10.1021/acs.jpclett.0c01614

SIMPLE-NN Documentation, Release 2.0.0

(continued from previous page)

O: params_O

neural_network:
train: False
test: False
add_NNP_ref: True
ref_list: 'ref_list'
train_atomic_E: False
use_scale: True
use_pca: True
continue: checkpoint_bestmodel.pth.tar

ref_list contains the dataset list to be evaluated to atomic energy. Reference NNP is written in continue. After
that, the reference dataset (.pt) are overwritten with atomic energies.

4.3.2 2. Training with atomic energy

Next, train the replica NNP only with atomic energy. To prevent the convergence among replicas, diversity the network
structure by increasing the standard deviation of initial weight distribution (gain (default: 1.0)) and change the number
of hidden nodes larger than reference NNP.

input.yaml

generate_features: False
preprocess: False
train_model: True
random_seed: 123

params:
Si: params_Si
O: params_O

neural_network:
train: False
test: False
add_NNP_ref: False
train_atomic_E: True
nodes: 30-30
weight_initializer:

params:
gain: 2.0

optimizer:
method: Adam

total_epoch: 100
learning_rate: 0.001
scale: True
pca: True
continue: null

Because the atomic energies are needed in training, data directory made from atomic_energy_extraction is needed.

4.3. Uncertainty estimation 33

SIMPLE-NN Documentation, Release 2.0.0

4.3.3 3. Uncertainty estimation in molecular dynamics

Note: You have to compile your LAMMPS with pair_nn_replica.cpp, pair_nn_replica.h, and
symmetry_function.h to evaluate the uncertainty in molecular dynamics simulation.

LAMMPS can calculate the atomic uncertainty through standard deviation of atomic energies. Because atomic uncer-
tainty will be written as atomic charge, prepare LAMMPS data file as charge format and modify your LAMMPS input
as below example.

lammps.in

units metal
atom_style charge

pair_style nn/r 3
pair_coeff * * potential_saved Si O &

potential_saved_30 &
potential_saved_60 &
potential_saved_90

compute std all property/atom q

dump mydump all custom 1 dump.lammps id type x y z c_std
dump_modify sort id

run 1

We provide the LAMMPS potentials whose network size are 60-60 and 90-90, respectively. Atomic un-
certainties are written in a dump file for each atoms. Outputs files are found in SIMPLE-NN/tutorials/
Uncertainty_estimation_answer/3.Uncertainty_estimation_in_molecular_dynamics.

34 Chapter 4. Advanced features

CHAPTER

FIVE

RELEASE NOTE

5.1 v2.1.0 (29 Sep 2022)

Breaking changes:

• Accelerated version of simulating molecular dynamics using SIMD and MKL.

– Main code developer (Yutack Park).

– Total 3x ~ 3.5x speed-up : pair_nn_simd.cpp, pair_nn_simd.h and pair_nn_simd_function.
h

5.2 v2.0.0 (3 Dec 2021)

Breaking changes:

• Refactoring SIMPLE-NN from Tensorflow to PyTorch!

– Main code developer (Seungwoo Hwang).

– Main code developer (Sangmin Oh).

– Project advisor and code developer (Jisu Jung).

– Project organizer and original code developer (Kyuhyun Lee).

5.3 v1.1.1 (23 Sep 2021)

General changes:

• Independent tags of generate and preprocess in input.yaml for consistency (Jisu Jung).

• Extended buffer in LAMMPS potential (pair_nn.cpp) for multinary (> 4) system (Jisu Jung).

Bug fixes:

• Fixed the inconsistency between the direct and cartesian positions from ASE (Jisu Jung).

• Fixed the memory leak in LAMMPS potential (pair_nn.cpp) (Jisu Jung).

35

SIMPLE-NN Documentation, Release 2.0.0

5.4 v1.1.0 (13 Oct 2020)

Development:

• Replica ensemble for quantifying the uncertainty (Wonseok Jeong and Jisu Jung).

Bug fixes:

• Fixed type mismatch in LAMMPS potential (pair_nn.cpp) (Jisu Jung).

5.5 v1.0.0 (21 Feb 2020)

Development:

• Stress training (Jisu Jung).

General changes:

• Optimized LAMMPS potential (pair_nn.cpp) (Dongsun Yoo).

• Changed the unit in LOG from epoch to iteration (Dongsun Yoo).

• PCA whitening (Dongsun Yoo).

5.6 v0.8.0 (6 Apr 2019)

Development:

• Gaussian density function (GDF) calculation (Kyuhyun Lee, Dongsun Yoo, Wonseok Jeong).

General changes:

• Added information to LOG (Kyuhyun Lee, Dongsun Yoo).

Bug fixes:

• Fixed MPI issues (Kyuhyun Lee, Dongsun Yoo).

5.7 v0.6.0 (20 Nov 2018)

General changes:

• Added brace expansion in str_list (Kyuhyun Lee).

• Added early stopping feature (Kyuhyun Lee).

36 Chapter 5. Release note

SIMPLE-NN Documentation, Release 2.0.0

5.8 v0.5.0 (11 Oct 2018)

General changes:

• stddev for weight initialization (Dongsun Yoo).

5.9 v0.4.6 (18 Sep 2018)

General changes:

• Warning on undefined tag in input.yaml (Dongsun Yoo).

Bug fixes:

• Fixed regularization. (Dongsun Yoo).

5.10 v0.4.5 (4 Sep 2018)

General changes:

• User-defined optimizer (Kyuhyun Lee).

5.11 v0.4.3 (24 Aug 2018)

General changes:

• Changed saving mechanism (Kyuhyun Lee).

5.8. v0.5.0 (11 Oct 2018) 37

SIMPLE-NN Documentation, Release 2.0.0

38 Chapter 5. Release note

CHAPTER

SIX

FAQ

• How to mitigate the overfittng?

– Try dropout of True , larger l2_regularization, less the number of node.

• How to restart from previous training?

– Write the file name of checkpoint of potential_saved in neural_network of input.yaml. Do not
forget to copy scale_factor and pca when using potential_saved.

39

	Installation
	Requirements
	Procedures
	1. Pytorch
	2. SIMPLE-NN
	2-1. Download via git clone
	2-2. Download as a zip file

	3. LAMMPS
	4. mpi4py (optional)
	5. Intel SIMD acceleration (optional)
	5.1 Requirements
	5.2 Installation
	5.3 Requirements for potential file
	5.4 Usage
	5.5 Further Acceleration

	Test your installation

	Inputs
	input.yaml
	Generate_features
	Preprocess
	Train_model
	Random_seed
	Params
	Data
	Path and format
	type
	struct_list
	refdata_format
	compress_outcar
	save_directory
	save_list
	absolute_path

	Data extraction
	read_force
	read_stress
	dx_save_sparse

	Preprocessing
	Train/validation
	data_list
	train_list
	valid_list
	valid_rate
	shuffle

	Scaling parameters
	calc_scale
	scale_type
	scale_rho
	scale_width

	PCA parameters
	calc_pca
	pca_whiten
	min_whiten_level

	Atomic weights
	calc_atomic_weights

	Neural network
	Running mode
	train
	train_list
	valid_list
	test
	test_list
	add_NNP_ref
	ref_list
	train_atomic_E
	test_atomic_E
	use_force
	use_stress
	shuffle_dataloader

	Network
	nodes
	acti_func
	double_precision
	weight_initializer
	dropout
	use_scale
	use_pca
	use_atomic_weights
	weight_modifier

	Optimization
	optimizer
	batch_size
	full_batch
	total_epoch
	learning_rate
	decay_rate
	l2_regularization

	Loss function
	loss_scale
	E_loss_type
	F_loss_type
	energy_coeff
	force_coeff
	stress_coeff

	Logging & saving
	show_interval
	save_interval
	energy_criteria
	force_criteria
	stress_criteria
	print_structure_rmse

	Continue
	continue
	clear_prev_status
	clear_prev_optimizer
	start_epoch

	Parallelism
	use_gpu
	GPU_number
	inter_op_threads
	intra_op_threads
	subprocesses

	params_XX
	structure_list
	run.py

	Quick tutorial
	Introduction
	Preprocess
	Training
	Evaluation
	Molecular dynamics

	Advanced features
	Introduction
	GDF weighting
	Uncertainty estimation
	1. Atomic energy extraction
	2. Training with atomic energy
	3. Uncertainty estimation in molecular dynamics

	Release note
	v2.1.0 (29 Sep 2022)
	v2.0.0 (3 Dec 2021)
	v1.1.1 (23 Sep 2021)
	v1.1.0 (13 Oct 2020)
	v1.0.0 (21 Feb 2020)
	v0.8.0 (6 Apr 2019)
	v0.6.0 (20 Nov 2018)
	v0.5.0 (11 Oct 2018)
	v0.4.6 (18 Sep 2018)
	v0.4.5 (4 Sep 2018)
	v0.4.3 (24 Aug 2018)

	FAQ

